
CAE-SCRUB for Incorporating 
Static Analysis into Peer 

Reviews

Lyle Barner
Jet Propulsion Laboratory, 
California Institute of Technology

1
© 2017 California Institute of Technology. 
Government sponsorship acknowledged.



What is CAE-SCRUB?

• Computer Aided Engineering-Source Code Review User 
Browser

• Peer review tool for static code analysis
– Originally developed by Gerard Holzmann of JPL’s Laboratory for 

Reliable Software

– Currently maintained by JPL’s CAE group and Software Quality 
Assurance (SQA) group

• Used by many past and current JPL projects
– Baseline version available to JPL projects that can be configured to 

meet project needs

2



The Value of CAE-SCRUB

• Helps organize and guide the code review process

– Aggregates and facilitates review of static code warnings

– Captures and manages review comments

– Allows developers and reviewers to concentrate on more 
contentious issues without neglecting code reviews
• Combines effectiveness of peer reviews and total coverage of static 

analysis

• Integrates static code analysis reviews into the 
software development lifecycle by treating each 
static analyzer as a “peer” in code reviews

3



How it Works

• Use configuration information to invoke different static 
analyzers to examine source code

• Filter warnings based on the scope of the peer review

• Provide standardized results that can be reviewed using 
the GUI as part of a regular peer review

• Use GUI’s review process to agree with, disagree with, 
and discuss all issues found by the analyzers and add 
generic peer review comments

• Review results trigger code changes to resolve issues

4



Standardization of Warnings

• A common format for displaying warnings

• Post-processing performs mapping from static 
analyzer format to CAE-SCRUB format

5

Priority File PathIDSource Line Number Query Name

Warning Description

Identification Location



Evolution of CAE-SCRUB

• Inherited a very well establish version of SCRUB, but 
it was not suitable for large-scale deployment

• Refactored backend code

– Improved architecture and stability

– Simplified setup process via configuration file based setup

– Improved error handling capabilities

• Improved installation guide and user guide

• Transitioned to git for version control

6



Architecture

7

CAE-SCRUB

Source 
Code

Output 
Files

ReadsReads

CreatesAnalyzes

Runs

Development Machine

Static 
Analyzers



Program Flow

8

User CAE-SCRUB Static Analyzer

Initiate Run Initialize

Perform 
Build/Analysis

Call Analyzer

Create Output
Post-process 

output

Clean Build

Perform Peer Review

More analyzers?

No

Yes



Typical Usage Example

1. CAE-SCRUB is run on desired revision/branch of source code
• Either manually or via system automation

2. Peer reviewers are notified of new results

3. Reviewers Agree/Disagree/Discuss results asynchronously

4. Lead developer analyzes peer review results and organizes 
peer review if necessary

a) Items where peer reviewers concur are not discussed

b) Solutions are proposed where applicable

c) False positives are noted and filtered out

5. Synchronous peer review is held to disposition remaining 
warnings

9



GUI Overview

10

Warning Context
Directory 
Browser

File List Warning Browser

Reviewers “vote” and add/edit 
comments

Reviewer can see each warning in context to help with 
discussion and disposition

Reviewers disposition each 
warning



Things CAE-SCRUB Does Well

• Provides a framework for static code analysis 
aggregation

• Provides a standardization of error types

• Streamlines the static analysis review process

• Implements a repeatable review process that 
can be integrated into development lifecycle

11



Areas for Improvement

• Difficult to deploy

– Requires detailed knowledge of how to configure multiple 
static analyzers

• Currently no integration with CM tools

• Number of warnings can be overwhelming

• Quality of results is highly dependent upon 
configuration

• No severity ranking information 

12



The Path Forward

• Investigate integration with other code review tools

– Integration with COTS peer review tools can mitigate the 
need to maintain local deployments of CAE-SCRUB

• Create baseline set of queries to be run for each 
static analyzer

• Create ranking system for types of warnings

• General stability improvements for backend

• Customizable query lists for static analysis tools

13



Summary

• CAE-SCRUB is a tool for integrating static 
analysis results into the peer review process

• It creates an extensible framework for 
connecting with static analysis tools

• Extensive work has been done to make large-
scale deployment a possibility

• Integration with other software engineering 
tools is a top priority going forward

14



Backup Slides

15



Current Areas of Investigation

• Integration with CM tools such as git

• Integration with continuous integration tools 
such as Jenkins

• Integration with code review tools such as 
Collaborator

16



Implementation

• Backend realization

– Collection of bash scripts handle running the static 
analyzers

– Collection of Python scripts handle post-
processing of data from static analyzers

• Frontend GUI written in Tcl/Tk

– Frontend handles viewing and commenting on the 
results from the static analyzers

17



What is Static Analysis?

• Identifies patterns in code that indicate refactoring 
opportunities to make code more maintainable

• Code reviews are not a feasible way to review 
millions of lines of code

• Provides automated checks against JPL coding 
standards and best practices

• Static analysis can perform verification, but not 
validation

18


